
LECTURE 11

Deadlock Prevention

Introduction :The Deadlock

problem

 In a computer system deadlocks arise when

members of a group of processes which

hold resources are blocked indefinitely

from access to resources held by other

processes within the group.

Deadlock example

 Pi requests one I/O controller and the
system allocates one.

 Pj requests one I/O controller and again the
system allocates one.

 Pi wants another I/O controller but has to
wait since the system ran out of I/O
controllers.

 Pj wants another I/O controller and waits.

Strategies for handling

deadlocks(Deadlock preliminaries)
 Deadlock prevention. Prevents deadlocks by

restraining requests made to ensure that at least
one of the four deadlock conditions cannot occur.

 Deadlock avoidance. Dynamically grants a
resource to a process if the resulting state is safe.
A state is safe if there is at least one execution
sequence that allows all processes to run to
completion.

 Deadlock detection and recovery. Allows
deadlocks to form; then finds and breaks them.

Deadlock Prevention

 1. A process acquires all the needed resources

simultaneously before it begins its execution,

therefore breaking the hold and wait condition.

 E.g. In the dining philosophers’ problem, each

philosopher is required to pick up both forks at

the same time. If he fails, he has to release the

fork(s) (if any) he has acquired.

 Drawback: over-cautious.

Cont..

 2. All resources are assigned unique numbers. A process

may request a resource with a unique number I only if it is

not holding a resource with a number less than or equal to

I and therefore breaking the circular wait condition.

 E.g. In the dining philosophers problem, each philosopher

is required to pick a fork that has a larger id than the one

he currently holds. That is, philosopher P5 needs to pick

up fork F5 and then F1; the other philosopher Pi should

pick up fork Fi followed by Fi-1.

 Drawback: over-cautions.

Resource-Allocation Graph(Model

of deadlock, resources)

 V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting of all the processes in

the system.

 R = {R1, R2, …, Rm}, the set consisting of all resource types in

the system.

 request edge – directed edge Pi Rj

 assignment edge – directed edge Rj Pi

A set of vertices V and a set of edges E.

Resource-Allocation Graph

(Cont.) Process

 Resource Type with 4 instances

 Pi requests an instance of Rj

 Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

Example of a Resource Allocation Graph

Resource Allocation Graph With A Deadlock

Resource Allocation Graph With A Cycle But No Deadlock

Basic Facts(Necessary &

sufficient condition for deadlock)
 If the resource allocation graph contains no cycles no deadlock.

 If the resource allocation graph contains a cycle

 if only one instance per resource type is available in the system, then

there is a deadlock.

 if several instances per resource type, possibility of deadlock exists.

 Possible side effects of preventing deadlock are low device
utilization and reduce system throughput

 An alternative method for avoiding deadlocks is to require
additional information about how resources are to be required.

 With this knowledge of the complete sequence of requests and

releases for each process the system can decide for each

request whether or not the process should wait in order to

avoid possible future deadlock.

 A deadlock avoidance algorithm dynamically examines the

resource-allocation state to ensure that a circular wait

condition can never happen

 A state is safe if the system can allocate resources to each

processes in some order (safe sequence) and still avoid a

deadlock.

 If no such sequence exists, then the system state is said to be

unsafe.

 If we have prior knowledge of how resources will be

requested, it's possible to determine if we are entering an

"unsafe" state.

Possible states are:

Deadlock No forward progress can be made.

Unsafe state A state that may allow deadlock.

Safe state A state is safe if a sequence of processes exist
such that there are enough resources for the first
to finish, and as each finishes and releases its
resources there are enough for the next to finish.

The rule is simple: If a request allocation would cause an unsafe
state, do not honor that request.

 Let's assume a very simple model: each process declares its

maximum needs. In this case, algorithms exist that will ensure

that no unsafe state is reached. Maximum needs does NOT

mean it must use that many resources – simply that it might do

so under some circumstances.

 There exists a total of 12 resources. Each resource is used

exclusively by a process. The current state looks like this:
 Max needs Current needs

 P0 10 5
 P1 4 2
 P2 9 2

At T0, the system is in safe state, since <P1,P0,P2> satisfied safe

state condition
What if P2 currently ask for one more tape and has that one?

Deadlock Detection

 Allow system to enter deadlock state

 Detection algorithm

 Recovery scheme

System with Single unit request

 Maintain wait-for graph

 Nodes are processes.

 Pi Pj if Pi is waiting for Pj.

 Periodically invoke an algorithm that searches for a cycle in

the graph. If there is a cycle, there exists a deadlock.

 An algorithm to detect a cycle in a graph requires an order

of n2 operations, where n is the number of vertices in the

graph.

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Consumable resource, reusable

resource(Several Instances of a Resource

Type)
 Available: A vector of length m indicates the number of

available resources of each type.

 Allocation: An n x m matrix defines the number of resources

of each type currently allocated to each process.

 Request: An n x m matrix indicates the current request of

each process. If Request [ij] = k, then process Pi is

requesting k more instances of resource type. Rj.

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively

Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi 0, then

Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti Work

If no such i exists, go to step 4.

Detection Algorithm (Cont.)

3. Work = Work + Allocationi
Finish[i] = true
go to step 2.

4. If Finish[i] == false, for some i, 1 i n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked.

Algorithm requires an order of O(m x n2) operations to detect

whether the system is in deadlocked state.

Example of Detection Algorithm

 Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances).

 Snapshot at time T0:

 Allocation Request Available

 A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

 Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i.

Example (Cont.)

 P2 requests an additional instance of type C.

 Request

 A B C

 P0 0 0 0

 P1 2 0 1

 P2 0 0 1

 P3 1 0 0

 P4 0 0 2

 State of system?

 Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests.

 Deadlock exists, consisting of processes P1, P2, P3, and P4.

Detection-Algorithm Usage

 When, and how often, to invoke depends on:

 How often a deadlock is likely to occur?

 How many processes will need to be rolled back?

 One for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there may be many

cycles in the resource graph and so we would not be able to tell

which of the many deadlocked processes “caused” the deadlock.

Recovery from Deadlock: Process Termination

 Abort all deadlocked processes.

 Abort one process at a time until the deadlock cycle is eliminated.

 In which order should we choose to abort?

 Priority of the process.

 How long process has computed, and how much longer to

completion.

 Resources the process has used.

 Resources process needs to complete.

 How many processes will need to be terminated.

 Is process interactive or batch?

Recovery from Deadlock: Resource Preemption

 Selecting a victim – minimize cost.

 Rollback – return to some safe state, restart process for that state.

 Starvation – same process may always be picked as victim,

include number of rollback in cost factor.

